RETAIN: An Interpretable Predictive Model for Healthcare using Reverse Time Attention Mechanism

نویسندگان

  • Edward Choi
  • Mohammad Taha Bahadori
  • Jimeng Sun
  • Joshua Kulas
  • Andy Schuetz
  • Walter F. Stewart
چکیده

Accuracy and interpretability are two dominant features of successful predictive models. Typically, a choice must be made in favor of complex black box models such as recurrent neural networks (RNN) for accuracy versus less accurate but more interpretable traditional models such as logistic regression. This tradeoff poses challenges in medicine where both accuracy and interpretability are important. We addressed this challenge by developing the REverse Time AttentIoN model (RETAIN) for application to Electronic Health Records (EHR) data. RETAIN achieves high accuracy while remaining clinically interpretable and is based on a two-level neural attention model that detects influential past visits and significant clinical variables within those visits (e.g. key diagnoses). RETAIN mimics physician practice by attending the EHR data in a reverse time order so that recent clinical visits are likely to receive higher attention. RETAIN was tested on a large health system EHR dataset with 14 million visits completed by 263K patients over an 8 year period and demonstrated predictive accuracy and computational scalability comparable to state-of-the-art methods such as RNN, and ease of interpretability comparable to traditional models.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

RETAIN: Interpretable Predictive Model in Healthcare using Reverse Time Attention Mechanism

Accuracy and interpretation are two goals of any successful predictive models. Most existing works have to suffer the tradeoff between the two by either picking complex black box models such as recurrent neural networks (RNN) or relying on less accurate traditional models with better interpretation such as logistic regression. To address this dilemma, we present REverse Time AttentIoN model (RE...

متن کامل

A Predictive Model for the Combustion Process in Dual Fuel Engines at Part Loads Using a Quasi Dimensional Multi Zone Model and Detailed Chemical Kinetics Mechanism

This work is carried out to investigate combustion characteristics of a dual fuel (diesel-gas) engine at part loads, using a quasi-dimensional multi zone combustion model (MZCM) for the combustion of diesel fuel and a single zone model with detailed chemical kinetics for the combustion of natural gas fuel. Chemical kinetic mechanisms consist of 184 reactions with 50 species. This combustion mod...

متن کامل

Identifiable Phenotyping using Constrained Non-Negative Matrix Factorization

This work proposes a new algorithm for automated and simultaneous phenotyping of multiple co–occurring medical conditions, also referred as comorbidities, using clinical notes from the electronic health records (EHRs). A basic latent factor estimation technique of non-negative matrix factorization (NMF) is augmented with domain specific constraints to obtain sparse latent factors that are ancho...

متن کامل

Comprehensive Decision Modeling of Reverse Logistics System: A Multi-criteria Decision Making Model by using Hybrid Evidential Reasoning Approach and TOPSIS (TECHNICAL NOTE)

In the last two decades, product recovery systems have received increasing attention due to several reasons such as new governmental regulations and economic advantages. One of the most important activities of these systems is to assign returned products to suitable reverse manufacturing alternatives. Uncertainty of returned products in terms of quantity, quality, and time complicates the decis...

متن کامل

An Adaptive Congestion Alleviating Protocol for Healthcare Applications in Wireless Body Sensor Networks: Learning Automata Approach

Wireless Body Sensor Networks (WBSNs) involve a convergence of biosensors, wireless communication and networks technologies. WBSN enables real-time healthcare services to users. Wireless sensors can be used to monitor patients’ physical conditions and transfer real time vital signs to the emergency center or individual doctors. Wireless networks are subject to more packet loss and congestion. T...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016